Lipid homeostasis and lipoprotein secretion in Niemann-Pick C1-deficient hepatocytes.
نویسندگان
چکیده
Niemann-Pick C (NPC) disease is a fatal inherited disorder characterized by an accumulation of cholesterol and other lipids in late endosomes/lysosomes. Although this disease is considered to be primarily a neurodegenerative disorder, many NPC patients suffer from liver disease. We have investigated alterations that occur in hepatic lipid homeostasis using primary hepatocytes isolated from NPC1-deficient mice. The cholesterol content of Npc1(-/-) hepatocytes was 5-fold higher than that of Npc1(+/+) hepatocytes; phospholipids and cholesteryl esters also accumulated. In contrast, the triacylglycerol content of Npc1(-/-) hepatocytes was 50% lower than of Npc1(+/+) hepatocytes. We hypothesized that the cholesterol sequestration induced by NPC1 deficiency might inhibit very low density lipoprotein secretion. However, this process was enhanced by NPC1 deficiency and the secreted particles were enriched in cholesteryl esters. We investigated the mechanisms responsible for these changes. The synthesis of phosphatidylcholine, cholesteryl esters, and cholesterol in hepatocytes was increased by NPC1 deficiency and the amount of the mature form of sterol response element-binding protein-1 was also increased. These observations indicate that the enhanced secretion of lipoproteins from NPC1-deficient hepatocytes is due, at least in part, to increased lipid synthesis.
منابع مشابه
Niemann-Pick C1 modulates hepatic triglyceride metabolism and its genetic variation contributes to serum triglyceride levels.
OBJECTIVE To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. METHODS AND RESULTS In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 sing...
متن کاملAberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease
Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...
متن کاملNiemann-Pick C1-Like 1 protein: Another target for treatment of dyslipidemia? Evidence from the Myocardial Infarction Genetic Consortium and IMPROVE-IT trials
INTRODUCTION Absorption of both dietary cholesterol and cholesterol cleared from the liver through biliary secretion contributes substantially to tight control of cholesterol homeostasis. This process is mediated by a specific transporter – Niemann-Pick C1-Like 1 (NPC1L1) protein – localized to the brush border membrane of jejunal enterocytes (Figure 1, Table 1). NPC1L1 was first described by D...
متن کاملExosome secretion ameliorates lysosomal storage of cholesterol in Niemann-Pick type C disease.
Niemann-Pick type C1 disease is an autosomal-recessive lysosomal storage disorder. Loss of function of the npc1 gene leads to abnormal accumulation of free cholesterol and sphingolipids within the late endosomal and lysosomal compartments resulting in progressive neurodegeneration and dysmyelination. Here, we show that oligodendroglial cells secrete cholesterol by exosomes when challenged with ...
متن کاملThe sterol-sensing domain of the Niemann-Pick C1 (NPC1) protein regulates trafficking of low density lipoprotein cholesterol.
The Niemann-Pick C1 (NPC1) protein is a key participant in intracellular sterol trafficking and regulation of cholesterol homeostasis. NPC1 contains a pentahelical region that is evolutionarily related to sterol-sensing domains found in other polytopic proteins involved in sterol interactions or sterol metabolism, including sterol regulatory element-binding protein cleavage-activating protein a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 282 3 شماره
صفحات -
تاریخ انتشار 2007